Data Stream Mining and IT Sustainability

Philip S. Yu (psyu@cs.uic.edu)

Wexler Chair in Information Technology University of Illinois at Chicago

Data Stream Processing

- Data stream offers a new paradigm for
 - Managing large volume of constantly generated data
 - Potentially with multi-modalities
 - Supporting real-time response
- Most suited for monitoring or surveillance type allications

Real-time Stream Applications

- Trade surveillance for security fraud and money laundering (also for detecting arbitrage opportunities)
- Bio-surveillance for terrorist attacks
- Sensor network for monitoring intelligent oil wells, manufacturing plants, RFID products, etc
- Network monitoring for intrusion detection
- Emergency room patient monitoring
- Web related applications
 - Click stream mining for real-time personalized recommendations
 - Text stream mining for topic detection
- System management
 - Power management for IT sustainability

Stream Mining

- Challenges
 - Real-time: One pass
 - Resource constraints
 - Limited memory and processing power
 - Evolving stream characteristics
 - Temporal locality
 - New patterns vs outliers/anomalies
 - Noisy data
- Mining algorithms developed
 - Clustering
 - Classification
 - Frequent pattern
 - Graph/Link/Relation

Predictive v.s. Reactive Failure Management

- Reactive failure management
 - Action after failure
- Predictive failure management
 - Send out failure warnings in advance
 - Memory space on host B will be used up after 30 seconds with probability 98%
 - Recovery actions before failure
 - Order replacement hardware in time
 - Migrate critical application components out of problematic hosts
 - Reduce the impact of system faults

Framework

A predictive failure management framework

- Utilize system analytic model for failure prediction
- Perform proper fault handling based on predictions

SAAO System Analytics Intuition – Step

Potential unknown failure: previously unseen behavior

Outlier detection "abnormal vs. normal"

SAAO System Analytics Intuition – Step 2a

SAAO System Analytics Intuition – Step 2b

Warning lead-time: Characterizing state *right before* failure

"failure lead-time"

Power Management

- A potential new stream processing/mining application on system management
 - Need to monitor power or temperature conditions
- Challenge
 - How to schedule tasks under power constraints or objectives

Temperature Aware Task Scheduling

- Processor can change speed (dynamic voltage scaling)
- Scheduling policy needs to consider both
 - Placement of tasks
 - Processing speed at each node
- Question
 - Is constant policy optimum from the power consumption view point?
 - What is the alternative?
 - Zig-zag?

"On Temperature-aware Scheduling for Single-processor Systems", IEEE Intl. Conf. on High Performance Computing, 2007.

Different Scheduling Policies

Constant: Simplest policy for ensuring that temperature threshold is not exceeded (operate at load ℓ_0).

Zig-Zag: Policies that alternate between stages of cooling and heating.

Summary

- Data stream offers a new paradigm for handling monitoring/surveillance type applications
- Provide predictive/proactive management instead of reactive management
- Offer new opportunities by coupling stream mining with power management